Difference between revisions of "Scaling"

From SourceWiki
Jump to navigation Jump to search
 
(53 intermediate revisions by the same user not shown)
Line 1: Line 1:
In this section, subscript 0 is used to denote scales; primed symbols denote scaled quantities; unadorned symbols denote unscaled quantities; and finite difference approximations are denoted using <math>\Delta\,</math>.   
+
In this section, subscript ''0'' is used to denote scales; primed symbols denote scaled quantities; unadorned symbols denote unscaled quantities; and finite difference approximations are denoted using <math>\Delta\,</math>.   
Scaling the equation for ice thickness evolution
+
 
 +
Scaling the equation for ice thickness evolution,
 +
 
 +
<math>\frac{\delta\,s} {\delta\,t}= b + \frac{\delta\,} {\delta\,x} D \frac{\delta\,s} {\delta\,x} + \frac {D} {w} \frac{\delta\,w} {\delta\,x}\frac{\delta\,s} {\delta\,x} </math>
 +
 
 +
 
 +
<math>
 +
\left [\frac{H_{0}}{T_{0}}\right ]\frac{\delta\,s'} {\delta\,t'} = \left [B_{0}\right]b' + \left [\frac{H_{0}D_{0}}{X_{0} ^2}\right ]\frac{\delta\,} {\delta\,x'}D' \frac{\delta\,s'} {\delta\,x'} + \left [\frac{H_{0}D_{0}W_{0}}{X_{0} ^2W_{0}}\right ]\frac {D'} {w'} \frac{\delta\,w'} {\delta\,x'}\frac{\delta\,s'} {\delta\,x'}
 +
</math>
  
<math>\frac{\delta\,s} {\delta\,t}</math>
 
  
 
and choosing
 
and choosing
  
+
 
 +
<math>         
 +
    B_{0}= \frac{H_{0}}{T_{0}}
 +
</math>
 +
 
 +
 
 +
<math>         
 +
    D_{0}= \frac{X_{0} ^2}{T_{0}} = \frac{B_{0} X_{0} ^2}{H_{0}}
 +
</math>
  
  
 
we obtain
 
we obtain
  
 +
<math>
 +
\left [\frac{H_{0}}{T_{0}}\right ]\frac{\delta\,s'} {\delta\,t'} = \left [\frac{H_{0}}{T_{0}}\right ]b' + \left [\frac{H_{0}X_{0}^2}{T_{0}X_{0} ^2}\right ]\frac{\delta\,} {\delta\,x'}D' \frac{\delta\,s'} {\delta\,x'} + \left [\frac{H_{0}X_{0}^2W_{0}}{X_{0} ^2 T_{0} W_{0}}\right ]\frac {D'} {w'} \frac{\delta\,w'} {\delta\,x'}\frac{\delta\,s'} {\delta\,x'}
 +
</math>
 
   
 
   
 +
 
In the code, diffusivity is found as (sigma refers to averaging needed to move between normal and staggered grid)
 
In the code, diffusivity is found as (sigma refers to averaging needed to move between normal and staggered grid)
  
 +
<math>
 +
diff = - \frac{2fA}{n+2} (\rho\,g)^n \left ( \frac{\sum H}{2} \right ) ^{n+2} \left | \frac{\Delta\, s}{\Delta\, x} \right |^{n-1}\left [\frac{H_{0}^{2n+1}}{X_{0} ^{n+1} D_{0}}\right ]\left [\frac{\Delta\, t} {\left (\Delta\,x\right )^2}\right ]
 +
 +
</math>.
 
   
 
   
  
Note that diff is not simply the scaled diffusivity but carries the appropriate time and grid steps (final bracketed quantity).  To find ice flux,
+
Note that ''diff'' is not simply the scaled diffusivity but carries the appropriate time and grid steps (final bracketed quantity).  To find the ice flux,
 +
 
 +
<math>
 +
Q' = - D'w' \frac{\Delta\, s'} {\Delta\,x'}
  
 +
</math>
 
   
 
   
  
however, in the code, need to remember to reset grid steps
+
however, in the code, we need to remember to reset the grid steps so,
 +
 
 +
<math>
 +
Q' = - diff w' \frac{\Delta\, s'} {\Delta\,x'} \left [\frac{\left (\Delta\,x'\right )^2}{\Delta\,t'}\right ] = - diff w'\Delta\, s'\left [\frac{\Delta\,x'}{\Delta\,t'}\right ]
 +
 
 +
</math>.
 +
 
 +
 
 +
Finally, we need to look at the convergence term.  In this case, nothing needs to be done because the various grid steps are needed however some averaging between grids is required,
 +
 
 +
<math>
 +
conv = \frac{\sum diff} {2w'} \frac {\Delta\,w'} {2\Delta\,x'}
  
+
</math>
  
Finally, we need to look at the convergence term.  In this case, nothing needs to be done because the various grid steps are needed however some averaging between grids is required
+
'''''Back to [[Skadia]]'''''

Latest revision as of 16:55, 2 November 2007

In this section, subscript 0 is used to denote scales; primed symbols denote scaled quantities; unadorned symbols denote unscaled quantities; and finite difference approximations are denoted using [math]\displaystyle{ \Delta\, }[/math].

Scaling the equation for ice thickness evolution,

[math]\displaystyle{ \frac{\delta\,s} {\delta\,t}= b + \frac{\delta\,} {\delta\,x} D \frac{\delta\,s} {\delta\,x} + \frac {D} {w} \frac{\delta\,w} {\delta\,x}\frac{\delta\,s} {\delta\,x} }[/math]


[math]\displaystyle{ \left [\frac{H_{0}}{T_{0}}\right ]\frac{\delta\,s'} {\delta\,t'} = \left [B_{0}\right]b' + \left [\frac{H_{0}D_{0}}{X_{0} ^2}\right ]\frac{\delta\,} {\delta\,x'}D' \frac{\delta\,s'} {\delta\,x'} + \left [\frac{H_{0}D_{0}W_{0}}{X_{0} ^2W_{0}}\right ]\frac {D'} {w'} \frac{\delta\,w'} {\delta\,x'}\frac{\delta\,s'} {\delta\,x'} }[/math]


and choosing


[math]\displaystyle{ B_{0}= \frac{H_{0}}{T_{0}} }[/math]


[math]\displaystyle{ D_{0}= \frac{X_{0} ^2}{T_{0}} = \frac{B_{0} X_{0} ^2}{H_{0}} }[/math]


we obtain

[math]\displaystyle{ \left [\frac{H_{0}}{T_{0}}\right ]\frac{\delta\,s'} {\delta\,t'} = \left [\frac{H_{0}}{T_{0}}\right ]b' + \left [\frac{H_{0}X_{0}^2}{T_{0}X_{0} ^2}\right ]\frac{\delta\,} {\delta\,x'}D' \frac{\delta\,s'} {\delta\,x'} + \left [\frac{H_{0}X_{0}^2W_{0}}{X_{0} ^2 T_{0} W_{0}}\right ]\frac {D'} {w'} \frac{\delta\,w'} {\delta\,x'}\frac{\delta\,s'} {\delta\,x'} }[/math]


In the code, diffusivity is found as (sigma refers to averaging needed to move between normal and staggered grid)

[math]\displaystyle{ diff = - \frac{2fA}{n+2} (\rho\,g)^n \left ( \frac{\sum H}{2} \right ) ^{n+2} \left | \frac{\Delta\, s}{\Delta\, x} \right |^{n-1}\left [\frac{H_{0}^{2n+1}}{X_{0} ^{n+1} D_{0}}\right ]\left [\frac{\Delta\, t} {\left (\Delta\,x\right )^2}\right ] }[/math].


Note that diff is not simply the scaled diffusivity but carries the appropriate time and grid steps (final bracketed quantity). To find the ice flux,

[math]\displaystyle{ Q' = - D'w' \frac{\Delta\, s'} {\Delta\,x'} }[/math]


however, in the code, we need to remember to reset the grid steps so,

[math]\displaystyle{ Q' = - diff w' \frac{\Delta\, s'} {\Delta\,x'} \left [\frac{\left (\Delta\,x'\right )^2}{\Delta\,t'}\right ] = - diff w'\Delta\, s'\left [\frac{\Delta\,x'}{\Delta\,t'}\right ] }[/math].


Finally, we need to look at the convergence term. In this case, nothing needs to be done because the various grid steps are needed however some averaging between grids is required,

[math]\displaystyle{ conv = \frac{\sum diff} {2w'} \frac {\Delta\,w'} {2\Delta\,x'} }[/math]

Back to Skadia