Difference between revisions of "Using petsc"

From SourceWiki
Jump to navigation Jump to search
Line 74: Line 74:
  
 
(There are also a debug versions of the libraries built at /opt/local/CentOS-64/petsc/3.0.0-p11/mpich-1.2.6/intel_fc_10.1/debug/lib/)
 
(There are also a debug versions of the libraries built at /opt/local/CentOS-64/petsc/3.0.0-p11/mpich-1.2.6/intel_fc_10.1/debug/lib/)
 +
 +
Note that there are '''docs''' and '''tutorials''', which you can copy under:
 +
 +
<pre>
 +
/opt/local/CentOS-64/petsc/petsc-3.0.0-p11
 +
</pre>
  
 
----
 
----

Revision as of 14:52, 24 February 2010

The chunk of f90 code at the bottom of this page shows one way to solve a sparse linear system, on a single processor - parallel version at using petsc (parallel) - using PETSc. I'll try to solve the a discrete version of the elliptic problem

[math]\displaystyle{ \nabla . (a(x,y) \nabla u) + b(x,y)u = c(x,y) }[/math]

[math]\displaystyle{ u(0) = 0 }[/math]

[math]\displaystyle{ u'(L) = d }[/math]

on a 256x256 grid, with a,b and c set so 1 on the left half of the domain, and h, r and p on the right - a bit like a grounding line problem

If you're new to PETSc, you might find all of the MatSetValues statements a bit odd. It *is* possible to full up normal Fortran arrays, and then insert them into PETSc structures, but the methods I've used below are (a bit) easier to adapt to multiple processors. The constants in the code

  !x > 1/2 diffusion = h u'
  h = 1e-2
  !x > 1/2 dissipation = r u , set small r to have problems inverting the matrix
  !so that direct solvers win
  r = 1e-6
  !x > 1/2 source = p
  p = 0.5
  ! u' at x = 1
  d = 100

were picked to give the solvers a hard time - if they were all 1, the iterative methods below would beat the direct solver decisively in CPU time. I think the strength of PETSc is the number of solvers and preconditioners you get to try without too much fiddling


To run this, first you need PETSc, I configured it like this (stuff I compile myself ends up in /local) (petsc is already install on the musketeers, see below)

./configure --prefix=/local/petsc/opt --download-parmetis=yes --download-mumps=yes 
--download-f-blas-lapack=yes --download-blacs=yes  
--download-scalapack=yes --enable-debugging=0 --with-mpi-dir=/local

then followed the install instructions. Most of the options are to do with obtaining and compiling mumps, and PETSc has interfaces to dozens of third party solvers and preconditioners

Then compiled like this (with correct filenames and include / lib dirs)


mpif90 -I /local/petsc/opt/include/ -I /local/include/ -x f95-cpp-input scalar.f90 
-L /local/petsc/opt/lib/ -L/local/lib  -lpetscksp -lpetscdm -lpetscmat -lpetscvec -lpetsc -ldmumps -lmumps_common   
-lparmetis -lmetis -lpord -lscalapack -lblacs -lflapack -lfblas -lX11

On the musketeers, you should do the following:

First load your chosen MPI layer, in this case we'll use MPICH compiled with ifort, but we could also choose to use OpenMPI (with gfortran or ifort):

module add mpich/intel_fc_ifort10.1/1.2.6

Now load the corresponding Petsc module:

module add petsc/mpich-1.2.6/intel_fc_10.1/3.0.0-p11

and then compile using the command line:

mpif90 -I /opt/local/CentOS-64/petsc/3.0.0-p11/mpich-1.2.6/intel_fc_10.1/include/ -I /local/include/ -fpp scalar.f90 \
-L /opt/local/CentOS-64/petsc/3.0.0-p11/mpich-1.2.6/intel_fc_10.1/lib/ -L/local/lib  \
-lpetscksp -lpetscdm -lpetscmat -lpetscvec -lpetsc -ldmumps -lmumps_common -lparmetis \
-lmetis -lpord -lscalapack -lblacs -lflapack -lfblas -lX11 -lpthread

(There are also a debug versions of the libraries built at /opt/local/CentOS-64/petsc/3.0.0-p11/mpich-1.2.6/intel_fc_10.1/debug/lib/)

Note that there are docs and tutorials, which you can copy under:

/opt/local/CentOS-64/petsc/petsc-3.0.0-p11

and run (despite compiling using mpif90 etc, the runs below will be serial):

>time ./a.out -ksp_monitor


0 KSP Residual norm 1.559571605727e+04 
1 KSP Residual norm 1.529424636367e+04 
2 KSP Residual norm 1.515888043725e+04 
3 KSP Residual norm 1.497463214399e+04 
4 KSP Residual norm 1.480442438141e+04 
.
.
.
541 KSP Residual norm 1.587899253129e-01 
542 KSP Residual norm 1.570278720318e-01 
543 KSP Residual norm 1.555037845050e-01 
 ||Ax - b||/||b|| =   6.395110096044148E-006

real    0m3.702s
user    0m3.651s
sys     0m0.031s

These default args give you GMRES(30) precondined with ilu(0) - much the same as the SLAP DSLUGM subroutine does. 543 is a lot of GMRES iterations - anything more than 30 and GMRES restarts, by default. It's possible to change this restart number, but instead I'll try a direct solver, MUMPS


> time ./a.out -ksp_monitor -pc_type lu -pc_factor_mat_solver_package mumps

0 KSP Residual norm 3.232253436059e+07 
1 KSP Residual norm 1.077336304460e-06 

||Ax - b||/||b|| =   1.173428394516308E-012
real    0m1.377s
user    0m1.263s
sys     0m0.097s

much better. But in this case, a different choice of iterative solver, biconjugate gradients, works well too (and will use less memory as the problem size increases)

time ./a.out -ksp_monitor -ksp_type bcgs

||Ax - b||/||b|| =   1.84931214581757455E-005
  0 KSP Residual norm 1.559571605727e+04 
  1 KSP Residual norm 2.654841192325e+04 
  2 KSP Residual norm 3.504875048005e+04 
  3 KSP Residual norm 3.727376385776e+04 
.
.
.
107 KSP Residual norm 2.332690535574e-01 
108 KSP Residual norm 1.976699334772e-01 
109 KSP Residual norm 1.560968894387e-01 
110 KSP Residual norm 1.366366438749e-01 
 ||Ax - b||/||b|| =   3.980990389893450E-006

real    0m0.892s
user    0m0.857s
sys     0m0.014s


or, with a different (more scalable) preconditioner, successive over relaxation

time ./a.out -ksp_monitor -ksp_type bcgs -pc_type sor
0 KSP Residual norm 9.191868858477e+03 
1 KSP Residual norm 1.399973304466e+04 
2 KSP Residual norm 2.017715315232e+04 
3 KSP Residual norm 2.256365643228e+04 
4 KSP Residual norm 2.245000461834e+04 
.
.
.
114 KSP Residual norm 2.371656459961e-01 
115 KSP Residual norm 2.201423306979e-01 
116 KSP Residual norm 4.348021435156e-02 
 ||Ax - b||/||b|| =   5.648286513658119E-006

real    0m0.913s
user    0m0.884s
sys     0m0.013s

contents of scalar.f90

!! solve a 2D n x n (a(x,y)u')' + b(x,y) u = c(x,y) 
!! with periodic boundary conditions in y, u(x=0,y) = 0 and u'(x=1,y)= d
!! a(x,y) = 1 for x < 1/2, h for x > 1/2
!! b(x,y) = 1 for x < 1/2, r for x > 1/2 
!! c(x,y) = 1 for x < 1/2, p for x > 1/2 

program main

  implicit none

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
#include "finclude/petscmat.h"
#include "finclude/petscksp.h"
#include "finclude/petscpc.h"
 
  
  Mat A
  Vec x,b, res
  KSP ksp
  PetscInt ierr, ndof, n, m, i , j
  PetscScalar dfluxe(0:1), dfluxw(0:1), dfluxn(0:1), dfluxs(0:1), su(0:0), sc, &
       h, r, p , d, rnorm, bnorm, one
  PetscInt row(0:0), fcol(0:1)
  
  n = 256
  m = n/2
  ndof = n * n

  !x > 1/2 diffusion = h u'
  h = 1e-2
  !x > 1/2 dissipation = r u , set small r to have problems inverting the matrix
  !so that direct solvers win
  r = 1e-6
  !x > 1/2 source = p
  p = 0.5
  ! u' at x = 1
  d = 100
  

  ! this has to be the first petsc call 
  call PetscInitialize(PETSC_NULL_CHARACTER,ierr)

  ! alocate space for rhs, residual and solution
  call VecCreateSeq(PETSC_COMM_SELF, ndof, x, ierr);
  call VecCreateSeq(PETSC_COMM_SELF, ndof, b, ierr);
  call VecCreateSeq(PETSC_COMM_SELF, ndof, res, ierr);

  !Matrix assembly. I'm doing this in the church of PETSc style, which might
  !look a bit odd. If you already have arrays i,j,a in the CSR form, there is 
  !a single call, 
  !
  ! call MatCreateSeqAIJWithArrays(PETSC_COMM_SELF, ndof, ndof , i, j, a, A, ierr)
  ! which would do the trick 
  !
  ! m is the number of rows, n > m the number of nonzeros
  ! a(0:n-1) contains values and j(0:n-1) coulmn indices
  ! i(0:m) contains row pointers, e.g i(4) data for row 4 starts
  ! at a(i(4)) and finishes at  a(i(5)-1)
 
  ! create matrix A, allocating 5 nonzeros per row, this doesn't have to be exactly
  ! right, but if it is to small, there will be costly mallocs, and if too
  ! large, additional operations. There is a  variant which allows a per-row sparisity
  ! pattern to be set.
  call MatCreateSeqAIJ(PETSC_COMM_SELF, ndof, ndof, 5, PETSC_NULL_INTEGER,A,ierr)
  
  
  ! bulk
  dfluxe(0) = 1.0
  dfluxe(1) = -1.0
 
  su(0) = 1.0
  sc = 1.0

  do i = 1, n-2

     dfluxw(0) = dfluxe(0)
     dfluxw(1) = dfluxe(1)

     
     dfluxn(0) = 1.0
     dfluxn(1) = -1.0

  

     if (i > m) then
        su(0) = r
        sc = p
        dfluxe(0) = h
        dfluxe(1) = -h
        dfluxn(0) = h
        dfluxn(1) = -h
     endif
     
     dfluxs(0) = dfluxn(0)
     dfluxs(1) = dfluxn(1)
    
     do j = 1, n-2
          
        row(0) = j*n + i
        
        
        ! source term
        call MatSetValues(A, 1 ,row, 1, row, su, ADD_VALUES,ierr)
        call VecSetValue( b, row(0) , sc , INSERT_VALUES, ierr)

        ! fluxes
        fcol(0) = row(0)

        fcol(1) = row(0) + 1
        call MatSetValues(A, 1 ,row, 2, fcol, dfluxe, ADD_VALUES,ierr)
        
        fcol(1) = row(0) - 1
        call MatSetValues(A, 1 ,row, 2, fcol, dfluxw, ADD_VALUES,ierr)
        
        fcol(1) = row(0) + n
        call MatSetValues(A, 1 ,row, 2, fcol, dfluxn, ADD_VALUES,ierr)
        
        fcol(1) = row(0) - n
        call MatSetValues(A, 1 ,row, 2, fcol, dfluxs, ADD_VALUES,ierr)
      

     end do

     ! periodic boundaries
     j = 0
     row(0) = j*n + i
     ! source term
     call MatSetValues(A, 1 ,row, 1, row, su, ADD_VALUES,ierr)
     call VecSetValue( b, row(0) , sc , INSERT_VALUES, ierr)

     ! fluxes
     fcol(0) = row(0)

     fcol(1) = row(0) + 1
     call MatSetValues(A, 1 ,row, 2, fcol, dfluxe, ADD_VALUES,ierr)
        
     fcol(1) = row(0) - 1
     call MatSetValues(A, 1 ,row, 2, fcol, dfluxw, ADD_VALUES,ierr)
        
     fcol(1) = row(0) + n
     call MatSetValues(A, 1 ,row, 2, fcol, dfluxn, ADD_VALUES,ierr)
        
     fcol(1) = (n-1)*n + i
     call MatSetValues(A, 1 ,row, 2, fcol, dfluxs, ADD_VALUES,ierr)
     

     j = n-1
     row(0) = j*n + i
     ! source term
     call MatSetValues(A, 1 ,row, 1, row, su, ADD_VALUES,ierr)
     call VecSetValue( b, row(0) , sc , INSERT_VALUES, ierr)

     ! fluxes
     fcol(0) = row(0)

     fcol(1) = row(0) + 1
     call MatSetValues(A, 1 ,row, 2, fcol, dfluxe, ADD_VALUES,ierr)
        
     fcol(1) = row(0) - 1
     call MatSetValues(A, 1 ,row, 2, fcol, dfluxw, ADD_VALUES,ierr)
        
     fcol(1) = row(0) - n
     call MatSetValues(A, 1 ,row, 2, fcol, dfluxn, ADD_VALUES,ierr)
        
     fcol(1) = i
     call MatSetValues(A, 1 ,row, 2, fcol, dfluxs, ADD_VALUES,ierr)
     
     


  end do
   
  !x-boundaries

  dfluxw(0) = h
  dfluxw(1) = -h

  do j = 0, n - 1
  
     i = 0
     row(0) = j*n + i
     call MatSetValues(A, 1 ,row, 1, row, su, ADD_VALUES,ierr)

     i = n - 1
     row(0) = j*n + i
     su = r
     sc = h*d
     call MatSetValues(A, 1 ,row, 1, row, su, ADD_VALUES,ierr)
     call VecSetValue( b, row(0) , sc , INSERT_VALUES, ierr)
     fcol(0) = row(0)
     fcol(1) = row(0) - 1
     call MatSetValues(A, 1 ,row, 2, fcol, dfluxw, ADD_VALUES,ierr) 
    
     


  end do


  !needs to be done before A can be used
  call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)
  call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr)

 
  !KSP context: KSP is petsc's interface to linear solvers
  call KSPCreate(PETSC_COMM_SELF,ksp,ierr)

  !A is defines both the operator and preconditioner (but might not)
  call KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN,ierr)

  !grab all the options from the command line
  call KSPSetFromOptions(ksp,ierr)

  ! solve
  call KSPSolve(ksp,b,x,ierr)

  !check results
  call MatMult(A, x, res, ierr)
  one = -1.0
  call VecAXPY(res , one , b, ierr)
  call VecNorm(res , NORM_2, rnorm, ierr) 
  call VecNorm(b , NORM_2, bnorm, ierr)
  write(*,*) "||Ax - b||/||b|| = ", rnorm/bnorm


  !clean up
   call VecDestroy(x,ierr)
   call VecDestroy(b,ierr)
   call MatDestroy(A,ierr)

  !last petsc call
  call PetscFinalize(ierr)

end program main