Difference between revisions of "Baseflow separation"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | + | ==Introduction== | |
+ | Chapman (1999) gives an excellent overview of baseflow separation techniques. Recursive digital filters are easiest to automate. Below are a few R implementations of the filter equations listed on the site: | ||
+ | |||
+ | NOTE: this is work in progress - the scripts have not yet been thoroughly tested and may contain bugs! | ||
+ | |||
+ | |||
+ | ==Filter equations== | ||
+ | |||
+ | ===One-parameter algorithm=== | ||
+ | |||
+ | Chapman (1999) equation 8: | ||
+ | |||
+ | bf_oneparam <- function(discharge, k){ | ||
+ | bf <- rep(discharge[1],length(discharge)) | ||
+ | for(i in 2:length(discharge)) { | ||
+ | bf[i] <- (k*bf[i-1]/(2-k)) + ((1-k)*discharge[i]/(2-k)) | ||
+ | if(bf[i] > discharge[i]) bf[i] <- discharge[i] | ||
+ | } | ||
+ | return(bf) | ||
+ | } | ||
+ | |||
+ | Parameter k is the recession constant during periods without direct runoff. | ||
+ | |||
+ | ===Boughton two-parameter algorithm=== | ||
+ | |||
+ | Chapman (1999) equation 9: | ||
+ | |||
+ | bf_boughton <- function(discharge, k, C){ | ||
+ | bf <- rep(discharge[1],length(discharge)) | ||
+ | for(i in 2:length(discharge)) { | ||
+ | bf[i] <- (k*bf[i-1]/(1+C)) + (C*discharge[i]/(1+C)) | ||
+ | if(bf[i] > discharge[i]) bf[i] <- discharge[i] | ||
+ | } | ||
+ | return(bf) | ||
+ | } | ||
+ | |||
+ | ===IHACRES three-parameter algorithm=== | ||
+ | |||
+ | Chapman (1999) equation 11: | ||
+ | |||
+ | bf_IHACRES <- function(discharge, k, C, a){ | ||
+ | bf <- rep(discharge[1],length(discharge)) | ||
+ | for(i in 2:length(discharge)) { | ||
+ | bf[i] <- (k*bf[i-1]/(1+C)) + (C*(discharge[i] + a*discharge[i-1])/(1+C)) | ||
+ | if(bf[i] > discharge[i]) bf[i] <- discharge[i] | ||
+ | } | ||
+ | return(bf) | ||
+ | } | ||
+ | |||
+ | <!-- ===Lyne and Hollick algorithm=== | ||
+ | |||
+ | ===Chapman algorithm=== | ||
+ | |||
+ | ===Furey and Gupta filter=== --> | ||
+ | |||
+ | |||
+ | ==References== | ||
+ | |||
+ | * Chapman, T., 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrol. Process. 13, 701-714 |
Latest revision as of 21:56, 3 August 2008
Introduction
Chapman (1999) gives an excellent overview of baseflow separation techniques. Recursive digital filters are easiest to automate. Below are a few R implementations of the filter equations listed on the site:
NOTE: this is work in progress - the scripts have not yet been thoroughly tested and may contain bugs!
Filter equations
One-parameter algorithm
Chapman (1999) equation 8:
bf_oneparam <- function(discharge, k){ bf <- rep(discharge[1],length(discharge)) for(i in 2:length(discharge)) { bf[i] <- (k*bf[i-1]/(2-k)) + ((1-k)*discharge[i]/(2-k)) if(bf[i] > discharge[i]) bf[i] <- discharge[i] } return(bf) }
Parameter k is the recession constant during periods without direct runoff.
Boughton two-parameter algorithm
Chapman (1999) equation 9:
bf_boughton <- function(discharge, k, C){ bf <- rep(discharge[1],length(discharge)) for(i in 2:length(discharge)) { bf[i] <- (k*bf[i-1]/(1+C)) + (C*discharge[i]/(1+C)) if(bf[i] > discharge[i]) bf[i] <- discharge[i] } return(bf) }
IHACRES three-parameter algorithm
Chapman (1999) equation 11:
bf_IHACRES <- function(discharge, k, C, a){ bf <- rep(discharge[1],length(discharge)) for(i in 2:length(discharge)) { bf[i] <- (k*bf[i-1]/(1+C)) + (C*(discharge[i] + a*discharge[i-1])/(1+C)) if(bf[i] > discharge[i]) bf[i] <- discharge[i] } return(bf) }
References
- Chapman, T., 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrol. Process. 13, 701-714