Difference between revisions of "NumMethodsPDEs"

From SourceWiki
Jump to navigation Jump to search
Line 6: Line 6:
  
 
=Looking at Nature=
 
=Looking at Nature=
 +
 +
<math>u_x = \frac{\partial u}{\partial x}</math>
  
 
A second-order linear equation in two variables:
 
A second-order linear equation in two variables:
  
<math> Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G </math>
+
<math>Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G</math>
  
 
* '''Parabolic''':  <math>B^2 - 4AC = 0</math>.  This family of equations describe heat flow and diffusion processes.
 
* '''Parabolic''':  <math>B^2 - 4AC = 0</math>.  This family of equations describe heat flow and diffusion processes.
Line 18: Line 20:
 
Taylor Series:
 
Taylor Series:
  
<math> f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f^{(2)}(x)}{2!}h^2 + \cdots + \frac{f^{(n)}(x)}{n!}h^n + R_n(x)</math>
+
<math>f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f^{(2)}(x)}{2!}h^2 + \cdots + \frac{f^{(n)}(x)}{n!}h^n + R_n(x)</math>

Revision as of 17:29, 17 January 2011

Numerical Methods for PDEs: Solving PDEs on a computer

Introduction

Looking at Nature

[math]\displaystyle{ u_x = \frac{\partial u}{\partial x} }[/math]

A second-order linear equation in two variables:

[math]\displaystyle{ Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G }[/math]

  • Parabolic: [math]\displaystyle{ B^2 - 4AC = 0 }[/math]. This family of equations describe heat flow and diffusion processes.
  • Hyperbolic: [math]\displaystyle{ B^2 - 4AC \gt 0 }[/math]. Describe vibrating systems and wave motion.
  • Elliptic: [math]\displaystyle{ B^2 - 4AC \lt 0 }[/math]. Steady-state phenomena.


Taylor Series:

[math]\displaystyle{ f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f^{(2)}(x)}{2!}h^2 + \cdots + \frac{f^{(n)}(x)}{n!}h^n + R_n(x) }[/math]