Difference between revisions of "Using petsc (parallel)"
m |
m |
||
Line 15: | Line 15: | ||
1 node, 4 cores : 32s | 1 node, 4 cores : 32s | ||
2 nodes 4 cores each : 14s | 2 nodes 4 cores each : 14s | ||
+ | 4 nodes, 1 core each : 23s | ||
</pre> | </pre> | ||
compared to the 49s required on my workstation with one core. Asking for 4 nodes seems to result in lengthy queuing. | compared to the 49s required on my workstation with one core. Asking for 4 nodes seems to result in lengthy queuing. | ||
Line 28: | Line 29: | ||
4 node, 2 cores each: 26s | 4 node, 2 cores each: 26s | ||
</pre> | </pre> | ||
− | Does this suggest that the iterative method scales better? perhaps not suprising as all it needs to do | + | Does this suggest that the iterative method scales better across nodes? perhaps not suprising as all it needs to do |
is matrix vector multiplies, which would mean the number of inteprocess comms growing like O(nCore) | is matrix vector multiplies, which would mean the number of inteprocess comms growing like O(nCore) | ||
only. | only. |
Revision as of 10:33, 12 February 2010
And here is a quick parallel code - compile as in using petsc but run like
mpirun -n <N procS> ./a.out <other options>
On my workstation, n = 2 actually results in better performance than n = 1(it has four cores but usually multicore cpus do nothing much for petsc), though not if I bump the problem up to 1024x1024
On bluecrystalp1, running a 1024x1024 problem with -pc_type sor -ksp_type bcgs (with parameters picked to make iterative solution hard), I get
1 node, 1 core : 70s 1 node, 2 cores : 45s 1 node, 4 cores : 32s 2 nodes 4 cores each : 14s 4 nodes, 1 core each : 23s
compared to the 49s required on my workstation with one core. Asking for 4 nodes seems to result in lengthy queuing.
using mumps instead (-pc_type lu -pc_factor mat_solver_package mumps) I get
1 node, 1 core : 77s 1 node, 2 cores: 48s 1 node, 4 cores: 31s 2 node, 1 core each: 47s 2 node, 2 cores each: 29s 2 node, 4 cores each: 26s 4 node, 2 cores each: 26s
Does this suggest that the iterative method scales better across nodes? perhaps not suprising as all it needs to do is matrix vector multiplies, which would mean the number of inteprocess comms growing like O(nCore) only.
!! solve a 2D n x n (a(x,y)u')' + b(x,y) u = c(x,y) !! with periodic boundary conditions in y, u(x=0,y) = 0 and u'(x=1,y)= d !! a(x,y) = 1 for x < 1/2, h for x > 1/2 !! b(x,y) = 1 for x < 1/2, r for x > 1/2 !! c(x,y) = 1 for x < 1/2, p for x > 1/2 program main implicit none #include "finclude/petsc.h" #include "finclude/petscvec.h" #include "finclude/petscmat.h" #include "finclude/petscksp.h" #include "finclude/petscpc.h" Mat A Vec x,b, res KSP ksp PetscInt ierr, ndof, n, m, i , j, lbegin, lend PetscScalar dfluxe(0:1), dfluxw(0:1), dfluxn(0:1), dfluxs(0:1), su(0:0), sc, & h, r, p , d, rnorm, bnorm, one PetscInt row(0:0), fcol(0:1) n = 256 m = n/2 ndof = n * n !x > 1/2 diffusion = h u' h = 1e-2 !x > 1/2 dissipation = r u , set small r to have problems inverting the matrix !so that direct solvers win r = 1e-6 !x > 1/2 source = p p = 0.5 ! u' at x = 1 d = 100 ! this has to be the first petsc call call PetscInitialize(PETSC_NULL_CHARACTER,ierr) !allocate space for matrix elements call MatCreateMpiAIJ(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, & ndof, ndof, 5, PETSC_NULL_INTEGER, 1,PETSC_NULL_INTEGER, A,ierr) ! alocate space for rhs, residual and solution call MatGetVecs(A, x, b, ierr); call MatGetVecs(A, x, res, ierr); !establish which dofs are on this processor call MatGetOwnerShipRange(A, lbegin, lend, ierr) ! bulk dfluxe(0) = 1.0 dfluxe(1) = -1.0 su(0) = 1.0 sc = 1.0 do i = 1, n-2 dfluxw(0) = dfluxe(0) dfluxw(1) = dfluxe(1) dfluxn(0) = 1.0 dfluxn(1) = -1.0 if (i > m) then su(0) = r sc = p dfluxe(0) = h dfluxe(1) = -h dfluxn(0) = h dfluxn(1) = -h endif dfluxs(0) = dfluxn(0) dfluxs(1) = dfluxn(1) do j = 1, n-2 row(0) = j*n + i if ((lbegin .le. row(0)) .and. (lend .gt. row(0))) then ! source term call MatSetValues(A, 1 ,row, 1, row, su, ADD_VALUES,ierr) call VecSetValue( b, row(0) , sc , INSERT_VALUES, ierr) ! fluxes fcol(0) = row(0) fcol(1) = row(0) + 1 call MatSetValues(A, 1 ,row, 2, fcol, dfluxe, ADD_VALUES,ierr) fcol(1) = row(0) - 1 call MatSetValues(A, 1 ,row, 2, fcol, dfluxw, ADD_VALUES,ierr) fcol(1) = row(0) + n call MatSetValues(A, 1 ,row, 2, fcol, dfluxn, ADD_VALUES,ierr) fcol(1) = row(0) - n call MatSetValues(A, 1 ,row, 2, fcol, dfluxs, ADD_VALUES,ierr) end if end do ! periodic boundaries j = 0 row(0) = j*n + i if ((lbegin .le. row(0)) .and. (lend .gt. row(0))) then ! source term call MatSetValues(A, 1 ,row, 1, row, su, ADD_VALUES,ierr) call VecSetValue( b, row(0) , sc , INSERT_VALUES, ierr) ! fluxes fcol(0) = row(0) fcol(1) = row(0) + 1 call MatSetValues(A, 1 ,row, 2, fcol, dfluxe, ADD_VALUES,ierr) fcol(1) = row(0) - 1 call MatSetValues(A, 1 ,row, 2, fcol, dfluxw, ADD_VALUES,ierr) fcol(1) = row(0) + n call MatSetValues(A, 1 ,row, 2, fcol, dfluxn, ADD_VALUES,ierr) fcol(1) = (n-1)*n + i call MatSetValues(A, 1 ,row, 2, fcol, dfluxs, ADD_VALUES,ierr) end if j = n-1 row(0) = j*n + i if ((lbegin .le. row(0)) .and. (lend .gt. row(0))) then ! source term call MatSetValues(A, 1 ,row, 1, row, su, ADD_VALUES,ierr) call VecSetValue( b, row(0) , sc , INSERT_VALUES, ierr) ! fluxes fcol(0) = row(0) fcol(1) = row(0) + 1 call MatSetValues(A, 1 ,row, 2, fcol, dfluxe, ADD_VALUES,ierr) fcol(1) = row(0) - 1 call MatSetValues(A, 1 ,row, 2, fcol, dfluxw, ADD_VALUES,ierr) fcol(1) = row(0) - n call MatSetValues(A, 1 ,row, 2, fcol, dfluxn, ADD_VALUES,ierr) fcol(1) = i call MatSetValues(A, 1 ,row, 2, fcol, dfluxs, ADD_VALUES,ierr) end if end do !x-boundaries dfluxw(0) = h dfluxw(1) = -h do j = 0, n - 1 i = 0 row(0) = j*n + i if ((lbegin .le. row(0)) .and. (lend .gt. row(0))) then call MatSetValues(A, 1 ,row, 1, row, su, ADD_VALUES,ierr) end if i = n - 1 row(0) = j*n + i if ((lbegin .le. row(0)) .and. (lend .gt. row(0))) then su = r sc = h*d call MatSetValues(A, 1 ,row, 1, row, su, ADD_VALUES,ierr) call VecSetValue( b, row(0) , sc , INSERT_VALUES, ierr) fcol(0) = row(0) fcol(1) = row(0) - 1 call MatSetValues(A, 1 ,row, 2, fcol, dfluxw, ADD_VALUES,ierr) end if end do !needs to be done before A can be used call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr) call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr) !KSP context: KSP is petsc's interface to linear solvers call KSPCreate(PETSC_COMM_WORLD,ksp,ierr) !A is defines both the operator and preconditioner (but might not) call KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN,ierr) !grab all the options from the command line call KSPSetFromOptions(ksp,ierr) ! solve call KSPSolve(ksp,b,x,ierr) !check results call MatMult(A, x, res, ierr) one = -1.0 call VecAXPY(res , one , b, ierr) call VecNorm(res , NORM_2, rnorm, ierr) call VecNorm(b , NORM_2, bnorm, ierr) write(*,*) "||Ax - b||/||b|| = ", rnorm/bnorm !clean up call VecDestroy(x,ierr) call VecDestroy(b,ierr) call MatDestroy(A,ierr) !last petsc call call PetscFinalize(ierr) end program main