Difference between revisions of "OpenMP"

From SourceWiki
Jump to navigation Jump to search
Line 95: Line 95:
 
</pre>
 
</pre>
  
In this example we'll look at an iterative algorithm to compute a value for pi and we'll see how we can speed this up spreading the iteration over several processors.
+
In this example we'll look at an iterative algorithm to compute a value for pi and we'll see how we can speed this up by spreading the iteration over several processors. There are C and Fortran90 examples which you can look at.
 +
 
 +
Note that in both the '''reduction_''' programs we explicitly control the number of threads that we want OpenMP to use (set to 4 initially) through a call to:
  
 
<pre>
 
<pre>
 
omp_set_num_threads(NUM_THREADS)
 
omp_set_num_threads(NUM_THREADS)
 
</pre>
 
</pre>
 +
 +
(A function call in C and a subroutine call in Fortran.)
 +
 +
In the C code, we flag the parallel reduction using the pragma statement:
 +
 +
<pre>
 +
#pragma omp parallel for reduction(+:sum) private(x)
 +
</pre>
 +
 +
We have a similar comment line in the Fortran code.  In this language, we use a '''do''' loop, and have a corresponding '''end do''' comment line for the benefit of OpenMP:
  
 
<pre>
 
<pre>
omp parallel for reduction(+:sum) private(x)
+
!$omp parallel do reduction(+:sum) private(x)
 +
...
 +
!$omp end parallel do
 
</pre>
 
</pre>
  
'''sum''' is indicated as the '''reduction variable'''.
+
In both cases we see that '''sum''' is indicated as the '''reduction variable''', and that '''x''' is kept private to each thread.
  
 
=A more Realistic Example=
 
=A more Realistic Example=
  
 
=Comparing Fortran and C=
 
=Comparing Fortran and C=

Revision as of 12:20, 14 November 2008

'Parallel: Using more than one processor at a time'

Introduction

I'd rather have a computer that not. They're handy for email and buying stuff from Amazon. Definitely. Indeed, for people of a certain mindset--people like you and me--we can do all sorts of interesting things like simulating the natural world, and in the process look at questions like, "will Greenland melt?" and "what would happen if it did?".

Sometimes it's handy to have more than one computer. Let's say that we have a new whizz-bang weather model that takes 26 hours to work out what the weather will do tomorrow. "All very well", you say, "but about as much use as a chocolate teapot." In order for the model to be of any use, we need it to run faster. We need to divide up the work it does and run it over two, or more computers. We need to enter the world of parallel programming.

"Hippee!" we cry, but a word of caution. Getting models to work in parallel is a lot, I say it again, a lot harder than getting them to work on a single processor. Before setting out down the road, it is well worth checking that you really do need your model to run faster, and that you've explored all avenues in that regard.

You still with us? OK, let's get stuck in.

OpenMP

There are a number of different ways to create parallel programs, and we're going to start with one approach, called OpenMP. There a number of reasons for this:

  1. It's pretty widely available
  2. It's good for the muli-core processors that we find in a lot of computers today
  3. It's fairly easy to use
  4. and it's based upon the not-so-minde-bending concept of threads

At this point, we could launch overselves into a long and detailed discussion of threads, the OpenMP runtime environment, pre-processor macro statements and the like. But we won't. Because it's less fun. Let's just try an example instead.

OK, to get the examples, login to a Linux box and cut & paste the below onto the command line:

svn co http://source.ggy.bris.ac.uk/subversion-open/parallel ./parallel

Hello, world

Right, now do the following:

cd examples/example1
make
./omp_hello_f90.exe

Tada! Just like the old classic 'hello, world', but this time run in parallel on as many processors as you have available on your machine. Good eh? Now, how did that all work?

Take a look inside the file omp_hello_f90.f90. First up we have used a Fortran90 module containing routines specific to OpenMP:

use omp_lib

This gives us access to routines like:

omp_get_num_threads()

The rest of the program is straightforward Fortran code, except for some comment lines starting with !$omp, such as:

!$omp parallel private(nthreads, tid)
...
!$omp end parallel

These lines specify that the master thread should fork a parallel region. From the code, you will see that all the threads on the team will get their thread ID--through calls to the OpenMP library--and will print it. The master thread will also ask how many threads have been spawned by the OpenMP runtime environment, and will print the total.

Notice that the variables nthreads and tid have been marked as private. This means that seperate copies of the these variables will be kept for each thread. This is essential, or else the print statement, 'Hello, world from thread = ' would get all mixed up, right? Try deliberatly mucking things up. Go on, see what happens if you delete tid from the private list.

Look inside the Makefile and notice that the use of OpenMP has been flagged to the compiler. -fopenmp in this case, as we are use gfortran. It would be just -openmp if you were using ifort. You would get a compile-time error, if you were to try to compile the code without this flag.

There is also a C version of the Fortran90 example in omp_hello_c.c.

Work Sharing inside Loops

OK, so far so good and we can run some code in parallel. As I mentioned in the introduction, however, the real benefits start to appear when we can divide up a task between different processors and let them get on with things in parallel. That way the program will run faster overall. In OpenMP-speak, this is worksharing. Let's look at a straightforward example:

cd ../example2

Again we have C and Fortran90 versions of the same program. Take a look inside schedule_f90.f90. Here we see that we have a parallel section in each thread enquires of it's ID and the master enquires of the total, as in example1. Notice this time that some variables are marked as shared. In particular, the array a. Inside the parallel section, we have a do loop preceeded by the comment:

!$omp do schedule(static,chunk)

This statement is the key to the worksharing. It means that the total number of interations will be chunked. The static keyword indicates that each chunk of (10) (contiguous) iterations will be farmed out to each thread in turn--round-robin fashion. We see that we are just initialising the values in the array in the loop. All threads need access to the same array and that's why it is marked as shared.

You can replace the static schedule with dynamic. In this case chunks are handed out to processors as they become available. In this case you may see a certain (quiet) processor get used several times and so all the processors may be called upon in the workshare. Try changing the chunk size too.

Reductions

A reduction combines elements from the different threads to form a single result. Examples of reductions could be summations or products. These can be handy sometimes.

cd ../example3

In this example we'll look at an iterative algorithm to compute a value for pi and we'll see how we can speed this up by spreading the iteration over several processors. There are C and Fortran90 examples which you can look at.

Note that in both the reduction_ programs we explicitly control the number of threads that we want OpenMP to use (set to 4 initially) through a call to:

omp_set_num_threads(NUM_THREADS)

(A function call in C and a subroutine call in Fortran.)

In the C code, we flag the parallel reduction using the pragma statement:

#pragma omp parallel for reduction(+:sum) private(x)

We have a similar comment line in the Fortran code. In this language, we use a do loop, and have a corresponding end do comment line for the benefit of OpenMP:

!$omp parallel do reduction(+:sum) private(x)
...
!$omp end parallel do

In both cases we see that sum is indicated as the reduction variable, and that x is kept private to each thread.

A more Realistic Example

Comparing Fortran and C